Correlation of Bulk Modulus and the Constituent Element Properties of Binary Intermetallic Compounds

Chonghe Li and Ping Wu*

Institute of High Performance Computing of Singapore, 89C Science Park Drive, #02-11/12 The Rutherford Singapore Science Park 1, Singapore 118261, Singapore

Received April 24, 2001

The correlation between the bulk modulus *B* and the atomic properties of binary intermetallics (element molar volume and element valence electron density) is studied using literature data of 240 binary intermetallic compounds and alloys. It is found that the bulk modulus of binary systems may be predicted (with an average error limit of $\pm 11\%$) by B = $n_{\rm ws}^2 V$, where $n_{\rm ws}$ and V are estimates from elemental valence electron density and molar volume, respectively.

1. Introduction

Intermetallic compounds are of interest to scientists and engineers because of their superior structural, electrical, chemical, and mechanical stability at high temperature.^{1–5} They are candidate materials not only for the next generation of efficient turbines and engines, ^{1,2,6} but also for new microelectronic systems.^{4,5} The elastic constant (bulk modulus or shear modulus) is an important mechanical property in the design and selection of materials. The bulk modulus of intermetallics is less sensitive to thermophysical processing histories or microstructural properties. Because it is a measure of the intrinsic interatomic force, it is often used to estimate interatomic potentials used in computer simulations.

Although elastic constants for a number of binary intermetallic compounds and alloys7-14 have been published, many have not, especially for those compounds with high melting temperature. Thus, it is important to predict or estimate the elastic constants for either theoretical study or industrial applications. Grammatickake¹⁵⁻¹⁷ and Varotsos^{18,19} used the thermodynamical model developed by Varotsos and Alexopoulos²⁰ to explain the elastic properties of substitutional alloys:

$$B = B_{\rm A} [1 + x(V_{\rm B}/V_{\rm A} - 1)] / [1 + x(B_{\rm A}V_{\rm B}/B_{\rm B}/V_{\rm A} - 1)] \quad (1)$$

- Taub, A. I.; Fleischer R. L. Science **1989**, 243, 616.
 Tanaka, K.; Koiwa, M. High Temp. Mater. Processes **1999**, 18, 323.
- (3) Fleischer, R. L. ISIJ Int. 1991, 31, 1186.
- (4) Wuu, D. S.; Chan, C. C.; Horng, R. H. J. Vac. Sci. Technol. 1999, A17 (6), 3327.
- (5) Wuu, D. S.; Lee, M. L.; Lin, T. Y.; Horng, R. H. Mater. Chem. Phys. 1996, 45, 163.
- (6) Fleischer, R. L. J. Mater. Sci. 1987, 22, 2281.
- (7) Makamura, M. In Intermetallic Compounds: Vol. 1, Principles; Westbrook, J. H., Fleischer, R. L., Eds.; John Wiley and Sons Ltd., 1994, p 873.
- (8) Fine, M. E.; Brown, L. D.; Marcus, H. L. Scr. Metall. 1984, 18, 951
- (9) Fleischer, R. L.; Gilmore, R. S.; Zabala, R. J. Acta Metall. 1989, 37 (10), 2801.
- (10) Nakamura, M. Metall. Trans. A 1994, 25A, 331.
- (10) Futurnini, M. Mithill, Frank, J. 1004, 201, 301, 301.
 (11) Yamanaka, S.; Yamada, K.; Tsuzuki, T.; Iguchi, T.; Katsura, M.; Hoshino, Y.; Saiki, W. J. Alloys Compd. 1998, 271–273, 549.
 (10) Taracha K.; Katsura M. Latarastalia 1006, 4 200.
 - (12) Tanaka, K.; Koiwa, M. Intermetallics 1996, 4, s29.

where B, B_A , and B_B are the bulk moduli of alloy $A_{1-x}B_x$, consisting of metal A and metal B, respectively; $V_{\rm A}$ and $V_{\rm B}$ are the molar volumes of metal A and metal B. Normally, good agreement with experiment is reached in dilute substitutional alloy systems where the volume change after mixing is proportional linearly to the atomic fraction of the alloy. By the well-known Vegard's law, Giri obtained the following expression:²¹

$$B = \left[(1 - x)a_{\rm A}B_{\rm A} + xa_{\rm B}B_{\rm B} \right] / a \tag{2}$$

where B, B_A , and B_B have the same definitions as above; *a*, *a*_A, and *a*_B are lattice constants for alloy $A_{1-x}B_x$, metal A, and metal B, respectively. Reasonable agreement can be obtained when alloy $A_{1-x}B_x$ has the same crystal structure with the constituent metal A and metal B. In another study, Cohen²² proposed a simple empirical model which can accurately predict bulk modulus for covalent solids; using this model, a new superhard material (β -C₃N₄) is predicted and synthesized. However, investigations focused on the bulk modulus of engineering materials have scarcely been performed with the empirical approach, especially for intermetallic compounds.

In this paper, starting from either Miedema's model²³ of alloys or Cho's model²⁴ with regards to bulk electron concentration, we derive a simple empirical model by

- (13) Chu, F.; Mitchell, T. E.; Majumdar, B.; Miracle, D.; Nandy, T. K.; Banerjee, D. Intermetallics 1997, 5, 147.
- (14) Davidson, D. L. Mater. Sci. Eng., A 2000, 293, 281.
- (15) Grammatikakis, J.; Manolopoulos, M.; Katsika, V.; Kostopoulos, D. Phys. Status Solidi 1994, 144A, 317.
- (16) Grammatikakis, J.; Papathanassiou, A. N. Phys. Status Solidi 1996, 155A, 365
- (17) Grammatikakis, J.; Katsika, V. J. Phys.: Condens. Matter 1990, 2, 3903.
 - (18) Varotsos, P. Phys. Status Solidi 1980, 99B, k93.
- (19) Varotsos, P.; Alexopoulos, K. Phys. Status Solidi 1980, 102B, k67.
- (20) Varotsos, P.; Alexopoulos, K. In *Thermodynamics of Point* Defects and Their Relation with Bulk Properties Series, Defects in *Solids*, Amelincky, S., Gevers, R., Nihoul, J., Eds.; North-Holland Publ. Co.: Amsterdam, 1986; pp 325–347 and pp 156–158.

 - (21) Giri, A. K. *Mater. Lett.* **1993**, *17*, 353.
 (22) Liu, A. Y.; Cohen, M. L. *Science* **1989**, *245*, 841.
 (23) Miedema, A. R. *Physica B* **1992**, *182*, 1.
 (24) Cho, S. A. *Trans. Jpn. Inst. Met.* **1981**, *22* (9), 643.

10.1021/cm0104203 CCC: \$20.00 © 2001 American Chemical Society Published on Web 11/27/2001

^{*} To whom correspondence should be addressed.

Table 1. The Value of <i>B</i> , <i>V</i> , and <i>n</i> _{ws} of	73	3 Elements
---	----	------------

				, , ,	,	W3			
atom	<i>B</i> (Gpa)	$n_{\rm ws}$ (e/au ³)	volume (10 ⁻⁶ m ³)	$(B/V)^{1/2}$	atom	<i>B</i> (Gpa)	n _{ws} (e/au ³)	volume (10 ⁻⁶ m ³)	$(B/V)^{1/2}$
Li	11.6	0.94	13.00	0.94	Th	54	2.10	19.80	1.65
Na	6.8	0.55	23.78	0.53	Lu	47.6	1.91	17.77	1.64
Κ	3.2	0.27	45.63	0.26	Tm	44.5	1.86	18.12	1.57
Rb	3.1	0.22	56.07	0.24	Er	44.4	1.86	18.45	1.55
Cs	1.57	0.17	69.23	0.15	Y	41.2	1.77	19.90	1.44
Η	0.2	3.38	1.70	0.34	Dy	40.5	1.82	19.00	1.46
Be	110	4.66	4.90	4.74	Ho	40.2	1.82	18.76	1.46
Zn	69.4	2.30	9.17	2.75	Tb	38.7	1.82	19.32	1.42
Cd	51	1.91	13.00	1.98	Gd	37.9	1.77	19.90	1.38
Hg	38.2	1.91	14.08	1.65	Sm	37.8	1.77	20.01	1.37
Mg	35.6	1.60	14.00	1.59	Pm	33	1.77	20.25	1.28
Ca	17.2	0.75	26.2	0.81	Nd	31.8	1.73	20.58	1.24
Sr	12	0.59	33.93	0.59	Yb	30.5	1.86	17.97	1.30
Ba	10.2	0.53	38.1	0.52	Pr	28.8	1.73	20.79	1.18
В	178	5.36	4.70	6.15	La	27.9	1.64	22.55	1.11
Al	75.2	2.70	10.00	2.74	Ce	21.5	1.69	21.62	1.00
Ga	56.9	2.25	11.82	2.19	Eu	14.7	1.77	19.97	0.86
In	41.1	1.60	15.75	1.62	Hf	109	3.05	13.45	2.85
As	38.3	3.00	11.85	1.80	Ti	108	3.51	10.58	3.20
Sb	38.3	2.00	16.95	1.50	Zr	89.8	2.8	14.00	2.53
Bi	31.5	1.56	19.32	1.28	Au	171	3.87	10.20	4.09
Р	30.4	4.49	8.60	1.88	Cu	138	3.18	7.12	4.40
Tl	28.5	1.40	17.23	1.29	Ag	104	2.52	10.25	3.18
Ν	1.2	4.49	4.10	0.54	Ta	196	4.33	10.81	4.26
С	443	5.55	3.25	11.68	Nb	170	4.41	10.80	3.97
Si	98	3.38	8.60	3.38	V	158	4.41	8.36	4.35
Ge	77.2	2.57	9.87	2.80	U	97.9	3.44	13.15	2.73
Sn	58.2	1.90	16.30	1.89	Pt	276	5.64	9.10	5.51
Pb	45.8	1.52	18.28	1.58	Pd	187	4.66	8.90	4.58
Pu	76	2.99	12.06	2.51	Ni	177	5.36	6.60	5.18
Sc	56.6	2.05	15.03	1.94	Ir	371	6.13	8.52	6.60
Th	54	2.10	19.8	1.65	W	311	5.93	9.55	5.71
Lu	47.6	1.91	17.77	1.64	Rh	276	5.45	8.30	5.77
Tm	44.5	1.86	18.12	1.57	Mo	261	5.55	9.40	5.27
Er	44.4	1.86	18.45	1.55	Co	182	5.36	6.70	5.20
Y	41.2	1.77	19.90	1.44	Cr	160	5.18	7.23	4.71
Dy	40.5	1.82	19.00	1.46	Os	373	6.33	8.45	6.64
Hŏ	40.2	1.82	18.76	1.46	Ru	286	6.13	8.20	5.91
Tb	38.7	1.82	19.32	1.42	Fe	166	5.55	7.09	4.84
Gd	37.9	1.77	19.90	1.38	Re	334	6.33	8.85	6.14
Sm	37.8	1.77	20.01	1.37	Mn	92.6	4.17	7.35	3.55
Pm	33	1.77	20.25	1.28	Tc	281	5.93	8.64	5.70
Sc	56.6	2.05	15.03	1.94					

using literature data. This model may be used to predict or estimate the bulk modulus of binary intermetallic compounds and alloys.

2. Bulk Modulus for Pure Elements

Miedema²³ proposed an empirical model for the prediction of alloy formation enthalpy. In this model, two semiempirical physical parameters, the work function ϕ , and the electron density n_{ws} are used for each element. The work function ϕ has about the same meaning as the electronegativity. The second parameter, $n_{\rm ws}$, is defined as the electron density at the boundary of Wigner-Seitz cell. For nontransition metals, it is obtained by summation of electron densities of free atoms, while for transition metals, it is derived from bulk modulus data. A nice linear relationship between $n_{\rm ws}$ and $(B/V)^{1/2}$ was presented by Miedema for Al, Cu, Fe, and five alkali metals,²³ where B and V are the bulk modulus and the molar volume of the elements, respectively. To extend this correlation beyond the above 8 elements, another 73 metal and semimetal elements are selected for testing. Their values of B, V, and n_{ws} are listed in Table 1.

Figure 1 illustrates a very good linear relationship between n_{ws} and $(B/V)^{1/2}$ for all except H, N, P, and C.

Figure 1. The linear relationship between n_{ws} and $(B/V)^{1/2}$ of 73 elements, n_{ws} in arbitrary density units [electron/(au)³], *B* in Gpa, and *V* in 10⁻⁶ m³ per mole.

This relationship can be expressed:

$$n_{\rm ws} = (B/V)^{1/2} \tag{3}$$

The abnormity for H, N, P, and C elements may result from their typical covalent features. The elements As, Cu, Fe, P, and U also deviate to some extent from the empirical regularity. The effect of this deviation to the bulk modulus of binary alloys containing these elements will be discussed later.

3. Bulk Modulus for Binary Systems

As mentioned above, a good linear relationship between $n_{\rm ws}$ and $(B/V)^{1/2}$ exists for metal or semimetal elements. Can this rule be extended to binary intermetallic compounds and alloys? If so, how are the electronic density n_{ws} and molar volume V estimated? An answer may be found by applying Miedema's semiempirical or macroscopic atom model,²³ where atoms are considered "blocks" of the elements and compounds or alloys are considered "piles" of the blocks. As an example, consider an intermetallic compound $A_{1-x}B_x$ that is formed by atom A (with the electronic density $n_{\rm wsA}$ and the molar volume $V_{\rm A}$) and atom B (with the electronic density $n_{\rm wsB}$ and the molar volume $V_{\rm B}$). The total valence electron numbers N contained in (1-x) mole element A and x mole element B can be obtained by Vegard's Law:

$$N = n_{\rm wsA} V_{\rm A} (1 - x) + n_{\rm wsB} V_{\rm B} x \tag{4}$$

The molar volume V of compound $A_{1-x}B_x$ can be predicted by Miedema's model.²³ Suppose that the total valence electron numbers N remain unchanged after compound $A_{1-x}B_x$ is formed. Then the "electron density" of compound $n_{\rm ws}$ can be obtained by the following equation:

$$n_{\rm ws} = N/V = [n_{\rm wsA}V_{\rm A}(1-x) + n_{\rm wsB}V_{\rm B}x)]/V \quad (5)$$

Table 2 lists the value of bulk modulus *B*, calculated molar volume V, total valence electron numbers N, calculated bulk modulus B_{cal} , and their prediction errors for 240 binary compounds and alloys. The values of ΔH , E, and B_{cal} are also listed in this table; their definitions will be given later. The values of bulk modulus for these compounds and alloys are obtained from the literature.7-14

Figure 2 illustrates the relationship between n_{ws} and $(B/V)^{1/2}$ of these compounds and alloys. From this figure, a good linear relationship can be obtained for binary metal systems. A linear fit between n_{ws} and $(B/V)^{1/2}$ of 69 metallic or semimetallic elements is also drawn in this figure. It is astonishing that the linear relationship for binary compounds is the same as for pure elements. The relationship can be expressed in eq 3, or it can be rewritten in eq 6; bulk modulus can also be estimated using this equation:

$$B = n_{\rm ws}^{2} V \tag{6}$$

In Table 2 and Figure 2, the prediction using eq 6 is close to the reported value with an average error limit of $\pm 11\%$.

Of special interest are the intermetallic compounds or semiconductor compounds whose chemical constitution is near 50at. %; for example, No7 (Al₅₁Co₄₉), No19 (Al₂Zr), No60 (NiAl), No177 (ZnS), and No180 (CdS) in Table 2. Their prediction errors are about 30% or more. Elastic constants are determined by the derivative of free energy with respect to strain. All factors that contribute to the total energy may add on to the elastic constant. Compounds whose atomic ratio of constituent elements is close to 1 show a large enthalpy of formation

(or called heat of formation). Therefore, the volume change after mixing may not be linearly proportional to the chemical constituent. To predict the bulk modulus more accurately, the enthalpy change (or short-range ordering) should be included. According to Miedema's model, cohesive enthalpies of intermetallic compounds E, consist of two parts: the average value of cohesive energy of constituent elements E_{AB} and the additional formation enthalpy ΔH . For compound $A_{1-x}B_x$, this cohesive enthalpy is defined as

$$E = \Delta H + E_{AB} = \Delta H + (1 - x)E_A + xE_B \qquad (7)$$

where E_A , E_B , and E_{AB} are cohesive energy of metal A, metal B, and their linear summation, respectively. The formation enthalpy ΔH can be predicted by Miedema's model.²³ In eq 6, the contribution of the formation enthalpy to bulk modulus is not considered; this may result in a larger prediction error for compounds whose formation enthalpy can no longer be neglected. Therefore, the contribution of formation enthalpy ΔH to bulk modulus has to be calculated.

Total bulk modulus can be expressed as

$$B = B_1 + B_2 \tag{8}$$

where B, B_1 , and B_2 are the total bulk modulus, the contribution by the linear summation energy of constituent elements, and the modification by the formation enthalpy, respectively. B_1 is obtained by eq 6, and B_2 is calculated by eq 9:

$$B_2 = B_1 \Delta H / (\Delta H + E_{\rm AB}) \tag{9}$$

Equation 9 shows that the modification with regards to the formation enthalpy is proportional to the fraction of the formation enthalpy in the total cohesive energy. From eqs 8 and 9, the bulk modulus may be predicted by

$$B = B_1 [1 + \Delta H/(E_{AB} + \Delta H)]$$
(10)

Table 2 lists the value of formation enthalpy ΔH , total cohesive enthalpy E, revised calculated bulk modulus B_{cal} , and their predicted errors. It is seen from Table 2 that the new model may provide better predictions for the intermetallics of equal elemental ratio.

4. Discussion

According to Martin's one-gap model,²⁵ bulk moduli for tetrahedrally coordinated compounds are proportional to -3.5 power of the interatomic distance. For the diamond and the zinc blende solid, Cohen²⁶ found good analytic relation of the bulk modulus $B=1761d^{-3.5}$, where *d* is the bond length. For elemental substances, the bulk modulus *B* can be determined by the effective pseudopotential radius rps through an empirical relation:²⁷ $B=Cr_{ps}m$, where C and m are constants related to the bonding character; the powers m range from -3.1to -3.4 (for the highly sp-bonded elemental substance).

Consider our empirical model with regards to this argument. Equation 6 can be rewritten as $B = Cz^2 d^{-3}$

⁽²⁵⁾ Martin, R. M. Phys. Rev. B 1970, 1, 4005.

 ⁽²⁶⁾ Cohen, M. L. Phys. Rev. B 1985, 32, 7988.
 (27) Makino, Y. J. Alloys Compd. 1996, 242, 122.

Table 2.	The Value of $n_{\rm res}$ and $(B/V)^{1/2}$ for Binary Systems
I ubic w.	The value of mys and (D, V) for Dinary Systems

				ne value of A	m_{WS} and (D)	v) 101 L	mary Syste			
no	compound	B (GPa)	$N(Me)^a$	V(10 ⁻⁶ m ³)	ΔH (KJ)	<i>E</i> (KJ)	$B_{\rm cal}$ (GPa)	error (%)	$B_{\rm cal}'$ (GPa)	error (%)
1	Al42.5Co57.5	136.0	31.88	7.81	43.1	425.9	130.1	4.3	143.2	5.3
2	Al51Co49	138.0	31.16	8.10	42.4	416.9	119.8	13.2	132.0	4.3
3	Al52.5Co47.5	153.0	31.03	8.16	41.9	414.9	118.0	22.8	129.9	15.0
4	Aal48Co52	156.0	31.41	8.00	43.1	420.6	123.3	20.9	136.0	12.8
5	Al49Co51	158.0	31.33	8.03	42.9	419.4	122.2	22.6	134.7	14.7
6	AlCo	162.0	31.24	8.07	42.7	418.2	121.0	25.3	133.3	17.7
7	Al51Co49	173.0	31.16	8.10	42.4	416.9	119.8	30.7	132.0	23.7
8	A146C054	180.0	31.58	7.93	43.3	422.7	125.8	30.1	138.7	22.9
10	A138C062	189.0	32.26	/.6/	41.8	428.9	135.7	28.1	148.9	21.1
10	A12G0 A159Du49	78.0	29.74	12.94 9 71	00.2 48 0	410.0 520.0	00.0	12.3	79.0	1.3
11	A132Ru40	206.0	37.99	8.63	48.0	543 5	175 5	14.8	100.0	5.1 7.1
12	A150Ru50	208.0	38.45	8 66	48.0	536.9	170.6	17.0	186.0	10.5
14	Al40Ru60	222.0	40.74	8.49	46.7	567.5	195.4	11.9	211.5	4.7
15	Al42Ru58	222.0	40.28	8.52	47.6	561.9	190.4	14.2	206.5	6.9
16	Al2U	83.0	29.39	10.85	55.7	452.3	79.6	4.1	89.4	7.6
17	Al2Y	89.2	29.74	12.94	65.2	423.9	68.3	23.3	78.9	11.6
18	Al3Zr	95.4	30.06	11.02	58.5	454.5	82.0	14.0	92.6	2.9
19	Al2Zr	117.0	31.09	11.36	73.2	492.2	85.1	27.2	97.7	16.4
20	AuCd	85.0	32.13	11.03	19.8	259.8	93.6	10.0	100.7	18.4
21	B6La	90.0	24.79	6.65	28.2	364.1	92.4	2.6	99.6	10.6
22	Be17Nb2	141.0	25.38	5.50	14.0	377.2	117.1	16.9	121.4	13.8
23	Be12Nb	177.0	24.67	5.33	10.2	361.8	114.1	35.5	117.3	33.7
24	Bel21i	117.0	23.84	5.28	12.1	343.5	107.6	8.0	111.4	4.8
25	Be13Zr	122.0	23.92	5.44	17.4	357.6	105.1	13.8	110.2	9.6
26	CaAlz	49.0	24.47	12.54	13.7	291.0	4/./	2.6	50.0	1.9
21	Co2HI Co27n	167.0	37.29	8.33	48.8	538.5 540.6	162.6	2.0	1729	0.Z
20 20	Cu221 Cr2Nb	200.0	30.74 40.00	0.04 8.40	07	5163	100.5	2.1	202.8	12.9
20	CoSi2	200.0	39.00	10 19	37.6	476.3	1/0 2	25 7	161.0	10.0
31	CrSi2	172 0	39.66	10.15	38.0	467.0	140.2	12 5	162.6	5 4
32	TiSi2	148.9	39.52	11.57	81.4	534.8	135.0	9.3	155.5	4 4
33	Cu2Mg	88.0	28.25	8.76	-25.6	246.7	91.2	3.5	81.7	7.1
34	CuZn	116.0	26.14	8.02	-11.1	221.9	85.2	26.5	81.0	30.1
35	ErFe2	103.0	34.31	9.94	33.1	414.1	118.4	14.9	127.9	24.1
36	GdAl2	80.0	29.74	12.95	65.2	416.5	68.3	14.6	79.0	1.2
37	IrNb	301.0	50.17	9.53	78.5	778.5	264.0	12.2	290.7	3.4
38	LaAl2	71.0	30.35	13.73	66.0	427.7	67.1	5.5	77.4	9.0
39	MgAg	66.0	24.12	11.76	15.8	230.3	49.5	25.0	52.9	19.9
40	Mg2Si	55.0	28.50	12.73	12.2	257.6	63.8	16.0	66.8	21.5
41	Mg2Sn	41.0	25.20	14.61	11.1	208.8	43.5	5.9	45.8	11.6
42	!MnS2	64.0	27.92	13.74	104.6	381.9	56.7	11.3	72.2	12.8
43	Mo0 25Nh0 75	215.5	50.02	10.04	8.4	701.4	249.0	15.5	252.0	16.9
44	Mo0.21Nb0.75	100.0	40.00	10.45	5.1 6.2	717.1	222 2	21.1 10.0	230.4	22.0
45	Mo24 8Nb	243 5	49.14	0.79	0.3 5.6	681 4	200.0	19.9	233.3	21.0
40	Mo0 37Nb0 63	243.5 194 5	49.40	10.26	5.0 7 3	710.6	200.2	22.3	2403	23.5
48	Mo0.44Nb0.56	206.6	49.70	10.15	8.1	706.4	243.3	17.7	246.1	20.0 19.1
49	Mo0.53Nb0.47	217.1	50.09	10.02	8.4	700.2	250.4	15.3	253.4	16.7
50	Mo0.72Nb0.28	235.8	50.91	9.76	6.2	684.4	265.6	12.6	268.0	13.6
51	Mo16.1Re	282.0	52.75	9.30	4.1	680.9	299.4	6.1	301.2	6.8
52	Mo27Re	292.5	53.19	9.23	6.9	696.5	306.4	4.7	309.4	5.7
53	Mo35Re	293.0	53.50	9.19	8.6	707.6	311.6	6.3	315.4	7.6
54	MoSi2	209.7	44.55	11.18	39.9	556.5	177.5	15.3	190.2	9.2
55	Nb33Cr77	192.7	40.56	8.29	9.0	504.5	198.5	3.0	202.1	4.8
56	NbCr2	200.0	40.90	8.40	9.7	516.3	199.1	0.4	202.8	1.4
57	Nb23.3Mo	187.7	48.81	10.47	4.8	718.0	227.5	21.2	229.0	22.0
58 50	IND33.9IVIO	197.4	49.27	10.31	0.8 60.2	/12.4 600.9	235.5	19.2	237.8	20.4
59	NUSIA NUAI	191.5	43.11	11.73 9.01	48.0	425 5	100.0	17.2	170.3	7.0 19.7
61	NiSAI	170.0	33.10	7 23	40.0	423.3	152.8	20.9	165.9	10.7
62	Ni3Fe	180.6	35.07	6 71	0.9	425 1	183.3	10.5	183 7	17
63	Ni3Ga	146.2	33.13	7.53	28.8	417.5	145.9	0.2	156.0	6.6
64	Ni3Ge	182.6	35.26	8.16	28.8	442.8	152.3	16.6	162.2	11.1
65	Ni3Mn	193.1	34.19	6.75	8.1	399.6	173.1	10.3	176.6	8.5
66	NiTi	140.3	36.18	8.35	50.2	498.2	156.6	11.6	172.4	22.9
67	PdTi	143.7	39.14	9.50	95.4	517.4	161.2	12.2	191.0	32.9
68	ReSi2	165.0	45.87	10.89	33.3	589.0	193.2	17.1	204.2	23.7
69	RuSc	148.0	40.37	10.31	62.9	575.9	158.1	6.8	175.4	18.4
70	Ru53Ta47	251.0	48.57	9.26	58.5	770.6	254.7	1.4	274.0	9.1
71	Ra11Ta9	255.0	48.62	9.21	58.4	767.8	256.8	0.6	276.3	8.3
72	Ru49Ta51	255.0	48.45	9.37	57.8	775.1	250.5	1.7	269.2	5.5
73	RullTa9	255.0	48.62	9.21	58.4	767.8	256.8	0.6	276.3	8.3
14 75	KUD11249	259.0	48.51	9.32	58.3	//3.0	252.6	2.4	2/1.6	4.8
10 76	SUI	00.U 166.0	33.8U 20.44	10.00	00.8 52 4	409.3	07.9 172.2	2.9	/ð.9 157 0	19.5
10	J16 V	100.0	33.44	10.00	JJ.4	J&1.4	143.2	13.7	137.9	4.0

no	compound	B (GPa)	$N(Me)^a$	$V(10^{-6} { m m^3})$	ΔH (KJ)	$E(\mathrm{KJ})$	$B_{\rm cal}$ (GPa)	error (%)	$B_{\rm cal}'$ (GPa)	error (%)
77	SiV3	175.0	37.78	9.31	50.9	546.4	153.3	12.3	167.6	4.2
78	Si3V5	187.0	38.27	9.79	67.6	554.9	149.7	19.9	167.9	10.1
79	Sn3Ce	55.0	30.32	16.34	56.6	388.1	56.3	2.2	64.5	17.2
80	TaSi2	192.5	42.86	11.73	69.8	627.8	156.6	18.6	174.0	9.5
81	TaV2	218.0	40.21	9.18	1.3	603.3	176.1	19.2	176.5	19.0
82		93.0	34.59	10.18	31.9	437.0	117.0 85.6	20.4	120.1	35.0
03 84	TIAIS Ti2Al	118.0	29.31	10.16	39.4	401.0	00.0 114.0	19.2	93.9	11.5
85	Ti28 4Cr	115.0	37.15	9.53	7 1	470.8	14.0	25.2	123.3	97 1
86	Ti50Cr50	147.0	37.13	8 77	10.9	442.4	158.2	7.5	162.1	10.2
87	Ti46Cr54	147.0	37.26	8.63	11.0	439.6	160.8	9.3	164.8	12.1
88	Ti44Cr56	150.0	37.27	8.57	11.0	438.1	162.1	8.0	166.2	10.7
89	Ti42Cr58	153.0	37.27	8.50	10.9	436.6	163.4	6.8	167.5	9.4
90	Ti40Cr60	154.0	37.28	8.44	10.8	435.0	164.7	6.9	168.8	9.6
91	Ti48Cr52	155.0	37.25	8.70	11.0	441.0	159.5	2.8	163.4	5.4
92	TiCr2	159.0	37.31	8.23	9.9	429.2	169.2	6.4	173.1	8.8
93	T113.8Cr	108.6	37.09	10.05	3.5	461.4	136.8	25.9	137.9	26.9
94	119.4Cr T:7Cr	107.8	37.07	10.21	2.4	403.5	134.0	24.8	133.3	23.4
95	TI/Cr Ti5Co2	108.3	37.00	10.30	1.8	404.7	133.4	25.4	133.9	28.0
97	Ti94Ge6	116.0	36.91	10.76	14.3	476.5	126.6	91	130.4	12.4
98	Ti20Re80	309.0	52.27	9.03	20.4	734.0	302.6	2.0	311.0	0.6
99	Ti5Re24	322.0	52.80	9.01	17.6	739.7	309.5	3.8	316.9	1.5
100	Ti64Ru36	173.0	41.66	9.40	52.9	586.4	184.6	6.7	201.2	16.3
101	TiRu	247.0	43.46	9.01	63.5	622.5	209.7	15.1	231.1	6.4
102	Ti87Sn13	97.0	36.23	11.36	19.9	466.5	115.5	19.1	120.5	24.1
103	Ti3Sn	97.5	35.49	12.10	37.6	464.3	104.0	6.7	112.5	15.3
104	Ufe2	134.0	34.26	8.66	7.9	461.9	135.5	1.1	137.8	2.8
105	Uni2	126.0	34.94	8.23	16.9	480.9	148.3	17.7	153.5	21.8
106	Uni5	182.0	35.13	7.38	9.7	455.7	167.1	8.1	1/0./	6.2
107	Upus	107.0	39.47	9.47	40.0	402.0 577 7	104.0	1.4	101.1	0.4 10.6
100	Uru3	264.0	42.43	9.00 8.85	20.2 13.6	635.1	238 7	23.3 95	209.8	7.6
110	V3Ge	168.0	36.35	9.73	37.0	514.0	135.7	19.2	145.5	13.3
111	Vsi2	167.2	39.44	10.86	53.4	521.4	143.2	14.3	157.8	5.6
112	V0.294Ti0.706	113.0	36.96	9.87	1.7	482.7	138.4	22.4	138.9	22.9
113	V0.385Ti0.615	116.7	36.93	9.66	2.2	487.1	141.2	21.0	141.8	21.5
114	V0.53Ti0.47	125.9	36.90	9.33	2.5	493.8	145.8	15.8	146.6	16.3
115	V0.73Ti0.27	138.1	36.85	8.90	1.8	501.9	152.5	10.3	153.0	10.7
116	Wsi2	222.4	46.01	11.20	34.7	618.4	189.1	14.9	199.7	10.2
117	W0.096Ta0.904	205.1	47.97	10.72	2.6	792.0	214.7	4.6	215.4	4.9
118	W0.785120.215 W0.60T-0.40	210.7	49.10	10.54	5.8 10.0	804.4 922 9	228.8	5.5 5.0	230.4	0.3
120	W0.00120.40 W0.36Ta0.64	266 1	53 11	0.03	9.8	8/11	283.0	5.9	2873	7.2
121	W0.10Ta0.90	297.7	55.57	9.64	2.9	854.2	320.3	7.5	321.4	7.9
122	Yal2	82.0	29.74	12.94	65.2	423.9	68.3	16.6	78.8	3.8
123	Yfe2	97.0	34.61	10.32	29.6	445.6	116.1	19.7	123.9	27.6
124	Yzn	62.0	28.15	14.32	51.3	327.3	55.3	10.7	64.0	3.2
125	ZrCo2	156.0	36.74	8.65	56.9	540.6	156.1	0.0	172.5	10.6
126	ZrCr2	142.0	38.05	9.19	16.8	481.1	157.6	11.0	163.1	14.8
127	TiAl	110.0	32.02	10.33	60.4	457.9	99.2	9.8	112.3	2.0
128	Al-Li alloy	72.0	26.26	9.93	0.7	319.3	69.4	3.5	69.6	3.3
129	AI-LI alloy $AI-I$ i allow	08.0 60.0	20.02 25.15	9.87	1.4	311.3	64.2	3.0 6.7	00.3 64.7	3.2 6.2
130	AI - Li alloy AI - Li alloy	67.0	23.13	9.83	1.0 9 1	307.7	62 7	6.4	63.1	5.8
132	Al-Li alloy	65.5	24.70	9.77	2.5	299.9	61.0	6.8	61.5	6 0
133	AlNi	156.0	31.16	8.03	48.0	425.5	121.0	22.4	134.6	13.7
134	Co68Ni32	183.1	35.43	6.61	0.3	425.5	189.9	3.7	190.0	3.7
135	NbCr2	229.4	40.90	8.40	9.7	516.3	199.1	13.2	202.8	11.5
136	HfV2	104.0	38.15	9.93	3.0	551.3	146.7	41.0	147.5	41.7
137	Mo7.0Re	270.8	52.39	9.35	1.8	668.0	293.6	8.4	294.4	8.7
138	Mo16.6Re	278.5	52.77	9.29	4.2	681.7	299.7	7.6	301.6	8.2
139	Mo26.9Re	284.1	54.25	9.08	10.1	731.0	324.0	14.0	328.5	15.6
140	ND16.8M0	1/9.3	48.53	10.57	3.4	719.0	222.1	24.2	223.8	24.8
141	Nb23 QMo	105.4	40.01	10.47	4.0	710.0	225 5	24.0	227.8	24.0 21.0
142	Nb51 6Mo	216.8	50.03	10.31	0.8 8.4	701 2	233.3	14.9	2523	16.3
144	Nb75.2Mo	242.8	51.05	9.71	5.6	681.4	268.2	10.4	270.4	11.3
145	Nb92.1Mo	257.7	51.77	9.49	1.8	665.5	282.4	9.5	283.1	9.8
146	Cr67Zr33	147.0	38.05	9.15	16.7	480.3	158.2	7.6	163.7	11.3
147	Cr64Cr36	147.0	38.10	9.34	17.3	487.2	155.4	5.7	160.9	9.4
148	Cr69Zr31	152.0	38.01	9.03	16.1	475.6	160.1	5.3	165.5	8.8
149	Mo5Si3	264.7	47.86	10.40	48.1	626.6	220.2	16.8	237.1	10.4
150	Nb83.2Mo16.8	179.3	48.53	10.57	3.4	721.3	222.7	24.2	223.8	24.8
151	IND/0./M023.3	185.2	48.81	10.4/	4.8	/18.U	227.5	22.8	229.0	23.6
102	1100.110033.9	130.4	43.67	10.31	0.0	112.4	200.0	13.0	201.0	£1.U

Table 2 (Continued)

no	compound	B (GPa)	$N(Me)^a$	$V(10^{-6} { m m^3})$	ΔH (KJ)	$E(\mathrm{KJ})$	$B_{\rm cal}$ (GPa)	error (%)	$B_{\rm cal}'$ (GPa)	error (%)
153	Nb48.4Mo51.6	216.8	50.03	10.04	8.4	701.2	249.3	14.9	252.3	16.3
154	Nb24.8Mo75.2	242.8	51.05	9.71	5.6	681.4	268.2	10.4	270.4	11.3
155	Nb7.2Mo92.8	257.1	51.80	9.48	1.6	664.8	283.0	10.0	283.7	10.3
156	Ta90W10	201.7	48.02	10.72	2.7	792.4	215.2	6.7	215.9	7.0
157	1a/0W30	220.7	49.94	10.41	8.0	813.1 921 5	239.6	8.5	242.0	9.6
158	1 a w Ta 3 3 W 6 7	243.7	53.48	9.91	11.0	812 9	200.7	9.0 7 3	209.2	10.4
160	Ta17W83	288 9	55 01	9.73	5.0	850 9	200.0	7.5	312 7	8.2
161	Cu92.7Ni7.3	181.2	31.50	7.05	2.6	345.3	140.8	22.2	141.9	21.6
162	Cu82.2Ni17.8	175.5	31.93	6.98	6.4	358.8	146.0	16.7	148.6	15.3
163	Cu80Ni20	176.2	32.02	6.97	7.2	361.6	147.2	16.4	150.1	14.8
164	Ci77.2Ni22.8	174.2	32.14	6.95	8.2	365.2	148.6	14.7	151.9	12.8
165	Cu64.5Ni35.5	169.7	32.66	6.88	12.3	380.9	155.2	8.5	160.1	5.6
166	Cu53.8Ni46.2	164.7	33.10	6.82	14.2	392.7	160.8	2.4	166.6	1.1
167	Cu31.1Ni68.9	151.0	34.04	6.71	11.4	410.8	172.7	14.3	177.5	17.5
100		80.0 77.0	21.22	9.17	44.1	3/3.1	80.8 70.0	0.0	90.3	5.0
109	AIAS	58.2	29.12	10.58	-8 1	287 9	61 1	9.0 1 9	72.0 59.3	0.5
171	GaP	88.7	27.00	9.88	47.1	348.1	73.8	16.8	83.8	5.5
172	GaAs	74.8	27.51	11.79	13.2	291.3	64.2	14.2	67.1	10.3
173	GaSb	57.0	29.21	15.09	-0.4	267.6	56.6	0.7	56.5	0.9
174	InP	71.0	26.29	11.28	47.3	334.3	61.2	13.7	69.9	1.5
175	InAs	60.0	26.79	13.41	15.2	279.3	53.5	10.8	56.4	5.9
176	InSb	47.4	28.49	16.89	7.4	261.4	48.1	1.3	49.4	4.2
177	ZnS	77.1	25.62	13.34	139.1	341.6	49.2	36.1	69.3	10.1
170	ZnSe ZnTe	62.4	24.74	13.82	58.9	242.4	44.3	29.0	55.0	11.7
1/9	CdS	51.0 62.0	24.00	13.91	10.0	101.1	38.2	23.1	40.4	20.7
181	CdSe	53.0	24 78	15.28	83 7	258.2	40.2	24.2	53.2	0.3
182	CdTe	42.4	24.69	17.58	36.0	197.5	34.7	18.2	41.0	3.3
183	HgSe	50.0	25.81	15.79	71.7	222.7	42.2	15.6	55.7	11.4
184	HgTe	42.3	25.72	18.05	26.9	164.9	36.6	13.3	42.6	0.7
185	Cu alloy	133.9	30.73	7.17	-1.4	325.1	131.7	1.6	131.1	2.0
186	Cu alloy	136.3	30.99	7.22	0.3	335.8	133.0	2.4	133.1	2.3
187	Cu alloy	131.6	30.78	7.36	0.5	335.6	128.6	2.2	128.8	2.1
188	Cu alloy	134.5	31.12	7.16	-0.5	334.5	135.3	0.6	135.1	0.4
109	Cu alloy	133.7	31.00	7.27	-1.2	332.0	132.1	2.0	131.0	2.9
191	Cu alloy	132.8	31.55	7.30	2.1	344.7	136.6	28	137.0	0.0 3.6
192	Cu alloy	139.5	31.93	7.48	3.8	348.3	136.3	2.2	137.8	1.1
193	Cu alloy	136.2	31.24	7.16	0.0	336.3	136.3	0.0	136.3	0.0
194	Cu alloy	133.2	31.26	7.20	-0.1	336.5	135.7	1.8	135.6	1.8
195	Cu–Ni alloy	137.7	31.29	7.08	0.9	339.0	138.4	0.5	138.7	0.7
196	Cu–Ni alloy	137.7	31.32	7.07	1.1	339.9	138.7	0.7	139.2	1.0
197	Cu–Ni alloy	138.0	31.38	7.06	1.6	341.8	139.4	1.0	140.1	1.5
198	Cu-Ni alloy	138.6	31.45	7.05	2.2	343.7	140.2	1.1	141.1	1.7
200	Cu = Au allow	139.2	31.00	7.03	3.5	348.4	142.0	2.0	143.4	3.0 1.0
200	Cu = Au alloy	139.0	31.21	7.10	13	338.2	137.5	1.0	137.5	0.6
202	Cu–Au alloy	145.5	32.02	7.41	4.5	343.7	138.3	4.9	140.2	3.6
203	Cu-Al alloy	136.9	31.07	7.18	0.2	335.9	134.5	1.7	134.6	1.7
204	Cu-Al alloy	135.5	30.89	7.29	0.4	335.7	130.8	3.4	130.9	3.3
205	Cu–Al alloy	134.3	30.74	7.39	0.6	335.6	127.9	4.7	128.2	4.5
206	Cu–Al alloy	137.6	31.16	7.11	0.0	336.0	136.6	0.7	136.6	0.7
207	Cu-Al alloy	136.9	31.05	7.18	0.2	335.9	134.2	1.9	134.3	1.8
208	Cu-Al alloy	130.0	30.99	7.22	0.3	335.8 225.7	133.0	2.0	133.1	2.3
209	Cu-Al alloy	135.6	30.81	7.28	0.4	335.7	131.2	3.3	131.4	3.2
211	Cu-Al alloy	135.2	30.84	7.32	0.4	335.7	129.9	3.8	130.1	3.7
212	Cu–Al alloy	134.4	30.76	7.37	0.5	335.6	128.4	4.4	128.6	4.3
213	Cu-Al alloy	133.0	30.64	7.45	0.7	335.5	125.9	5.3	126.2	5.1
214	Pb-Tl alloy	44.8	27.78	18.28	0.0	196.0	42.2	5.6	42.2	5.6
215	Pb–Tl alloy	45.0	27.75	18.27	0.0	195.9	42.1	6.3	42.1	6.3
216	Pb–Tl alloy	44.5	27.72	18.26	0.0	195.8	42.1	5.4	42.1	5.4
21/	Pb-11 alloy	44.7	27.70	18.25	0.1	195.7	42.0	5.9	42.0	5.9
210 210	PD = 11 alloy Pb = Tl allow	44.3	27.00	18.24	0.1	195.0	41.9	0.0 1 0	42.0	0.2 1 8
220	Ph-Tl alloy	43.5	27.30	18 11	0.1	194.3	41.7	4.5	41.7	4.0
221	Pb-Tl allov	42.6	27.14	18.08	0.4	194.0	40.7	4.4	40.8	4.2
222	Zn–Cu allov	133.9	29.97	7.45	-0.4	296.5	120.7	9.8	120.5	10.0
223	Zn–Cu alloy	126.6	29.33	7.63	-0.6	275.7	112.7	11.0	112.4	11.1
224	Fe–Ni alloy	173.1	36.42	6.73	1.6	425.6	197.1	13.8	197.9	14.3
225	Au-Ni alloy	172.6	39.31	10.08	-0.7	369.1	153.3	11.1	153.0	11.3
226	Au-Ni alloy	171.4	39.04	9.84	-2.3	371.5	154.9	9.6	153.9	10.2
221	Au-Ni alloy	1705	38.44 27 60	9.32	-5.8	3/6.7	158.6 164 1	7.U 2.7	156.2	8.5 6 1
220	Au-INI alloy	1/0.3	37.09	0.00	-9.0	J0J.0	104.1	3.7	100.0	0.1

Table 2 (Continued)

no	compound	<i>B</i> (GPa)	$N(Me)^a$	$V(10^{-6}m^{3})$	ΔH (KJ)	$E(\mathrm{KJ})$	B_{cal} (GPa)	error (%)	B_{cal}' (GPa)	error (%)
229	Cu–Ni alloy	181.1	35.02	6.62	2.8	424.0	185.3	2.3	186.5	3.0
230	Cu–Ni alloy	175.9	34.59	6.66	6.7	418.4	179.7	2.1	182.6	3.7
231	Cu–Ni alloy	174.9	34.38	6.68	8.6	415.6	177.0	1.2	180.7	3.3
232	Zn-Cu alloy	133.9	30.87	7.18	-0.1	325.6	132.7	0.9	132.6	0.9
233	Mg–Li alloy	37.1	22.21	13.95	0.0	145.2	35.4	4.5	35.4	4.5
234	Mg-Li alloy	36.9	22.06	13.92	0.0	145.4	35.0	5.1	35.0	5.1
235	Mg-Li alloy	36.7	21.85	13.87	0.1	145.7	34.4	6.1	34.4	6.0
236	Mg-Li alloy	36.2	21.66	13.83	0.1	146.0	33.9	6.4	33.9	6.3
237	Mg-Li alloy	35.8	21.35	13.77	0.1	146.4	33.1	7.5	33.1	7.4
238	Mg-Li alloy	35.4	21.15	13.73	0.1	146.7	32.6	8.0	32.6	7.9
239	Mg-Li alloy	35.2	20.93	13.68	0.2	147.0	32.0	8.9	32.1	8.8
240	Mg–Li alloy	34.7	20.75	13.64	0.2	147.3	31.6	9.0	31.6	8.9
	average							11.0		10.3

^{*a*} *M* is a constant and equals 6.748×10^{24} .

Figure 2. The linear relationship between n_{ws} and $(B/V)^{1/2}$ of pure elements and binary compounds, n_{ws} in arbitrary density units [electron/(au)³], *B* in Gpa, and *V* in 10⁻⁶ m³ per mole. \bigcirc , Pure elements; \times , binary intermetallics.

because n_{ws} is proportional to z'V, where V is roughly proportional to d^8 , C is a constant, z is the number of valence electrons contained in the unit cell, V is the unit cell volume, and d is the equilibrium interatomic distance. In our model, bulk modulus B is also proportional to d^m , and the power m is equal to -3 which is very close to the previous results.

For a terminal solid solution, the formation enthalpy (or heat of formation) ΔH is close to zero; eq 10 will reduce to eq 9, which means our model can also be applied to a terminal solid solution. As to more complicated intermetallic compounds and alloys, because their formation enthalpies can no longer be neglected, the additional term $\Delta H/(E + \Delta H)$ must be considered to predict their bulk modulus. That is, our model can predict the bulk modulus for intermetallic compounds, alloys, and ideal dilute solid solutions.

The trends in the elastic constant of the simple and transition elemental cubic metals is investigated by Rose and Shore²⁸ in terms of a uniform electron-gas theory. The elastic properties of metals depend primarily on two parameters: the average electron density

at the cell boundary and less importantly the bonding valence. This conclusion is very similar to ours which may be rearranged as $B = n_{ws}^2 V = n_{ws}(n_{ws}V) = n_{ws}Z$. But unlike the model by Rose and Shore, eq 6 may cover binary alloys.

As noted above, carbon does not obey this linear relationship, so carbides (e.g., TiC and SiC) are not included in Figure 2, which means that the carbides may not obey this empirical rule. Attention is also needed for copper alloys because copper also shows some abnormality (see Figure 1). If we still use the original value of $n_{ws} = 3.18$ in Figure 2, all alloys containing Cu will obviously deviate from the ideal line in this figure. Therefore, it is reasonable to use the curve fit best estimate, $n_{\rm ws} = 4.40$, for copper alloys. The same correction is also applied to element As(2.4), P(3.19), Fe-(4.84), and U(2.72). The value of $n_{\rm ws}$ for elements S(1.71), Se(1.5), and Te(1.2) is not given in Miedema's model; the value of n_{ws} is supposed to equal the value of $(B/V)^{1/2}$ to estimate the bulk modulus of compounds containing these elements.

5. Conclusions

The correlation between the bulk modulus and the constituent element properties of binary intermetallic compounds and alloys has been constructed on the basis of literature data of 240 compounds and alloys. Using this model, the following results have been obtained:

(1) A relationship among bulk modulus B, molar volume V, and valence electron density n_{ws} for 69 metal or semimetal elements (except H, N, P, and C elements) exists and can be expressed by eq 6.

(2) A relationship among bulk modulus *B*, molar volume *V*, and valence electron density n_{ws} for binary compounds and alloys exists and can also be expressed by eq 6, with average predicted error limits of $\pm 11\%$.

(3) For compounds whose atomic ratio is near to 1 and which have a large formation enthalpy, the contribution of formation enthalpy must be considered to predict their bulk modulus; the bulk modulus may be predicted by eq 10.

CM0104203

⁽²⁸⁾ Rose J. H.; Shore H. B. Phys. Rev. B 1994, 49, 11588.